Micro and Nanotechnology Lab
Building Faculty
2262 Micro and Nanotechnology Lab
208 N. Wright Street
Urbana Illinois 61801
(217) 265-6354
Cleanroom Faculty
2262 Micro and Nanotechnology Lab
208 N. Wright Street
Urbana Illinois 61801
(217) 265-6354
  • Electrical and Computer Engineering
2262 Micro and Nanotechnology Lab
208 N. Wright Street
Urbana Illinois 61801
(217) 265-6354

Primary Research Area

  • Optoelectronics and Nanophotonics
Xiuling Li
Xiuling Li



Xiuling Li received her B.S. degree form Peking University and Ph.D. degree from the University of California at Los Angeles. Following post-doctoral positions at California Institute of Technology and University of Illinois, as well as industry experience at EpiWorks, Inc., she joined the faculty of the University of Illinois in 2007 as an Assistant Professor in the Department of Electrical and Computer Engineering. She was promoted to Associate Professor with tenure in 2012, and to Professor in 2015. Her research interests are in the area of nanostructured semiconductor materials and devices for applications in electronic, photonic, and biomedical applications. Her honors and awards include NSF CAREER award, DARPA Young Faculty Award, ONR Young Investigator Award, and IEEE Fellow. She has published more than 123 journal papers and holds more than 20 patents (10 awarded and 10+ pending). She served on the Board of Governors of the IEEE Photonics Society, and technical program committees of several international conferences. She is also a Deputy Editor of Applied Physics Letters.

For more information

Professional Registrations

  • IEEE Fellow, 2017

Professional Highlights

  • IEEE Fellow (2017)
  • Faculty Entrepreneurial Fellow, College of Engineering, UIUC (2015-2016)
  • Willett Faculty Scholar, College of Engineering, UIUC (2015 - )
  • IEEE Nanotechnology Council Distinguished Lecturer (2014-2015)
  • Board of governors, IEEE Photonics Society (2014-2016)
  • A. T. Yang Research Award, ECE, UIUC (2013)
  • Dean’s Award for Excellence in Research, College of Engineering, UIUC (2012)
  • ONR Young Investigator Research Award (2011)
  • DARPA Young Faculty Award (2009)
  • NSF CAREER Award (2008)
  • Invention of Metal Assisted Chemical Etching (MacEtch) for high aspect ratio semiconductor nanostructure fabrication, with fix patents awarded and several more pending.
  • Invention of miniaturized passive electronic devices including inductors, transformers, filters, transmission lines, etc. using self-rolled-up membrane nanotechnology, with three patents awarded and three more pending.
  • Invention of planar III-V nanowires by selective lateral epitaxy for scalable high performance nanoelectronic applications, with one patent awarded, best paper award, and cover article in Nano Letters.

Resident Instruction

  • ECE 518 (formerly 598XL), Adv. Semiconductor Nanotechnology
  • ECE 444, IC Device Theory and Fabrication

Undergraduate Research Opportunities

Research positions available to highly motivated undergraduate students who have strong interests in semiconductor materials, processing, and devices, and firm commitment to research. Past undergraduate student researchers in professor Li's group have produced first-author papers, patents, and conference presentations. Interested students please contact Prof. Li with complete CV.

Research Interests

  • Metalorganic chemical vapor deposition (MOCVD)
  • Compound semiconductor
  • nanotechnology
  • nanowires
  • nanoelectronics
  • photovoltaics
  • nanophotonics
  • metal-assisted chemical etching (MacEtch)
  • self-rolled-up membrane (S-RuM) nanotechnology
  • passive electronic components

Research Areas

  • Micro and Nanoelectronics
  • Optoelectronics and Nanophotonics

Selected Articles in Journals

  • “Enhanced Optical Transmission Through MacEtch-Fabricated Buried Metal Gratings,” R. Liu, X. Zhao, C. Roberts, L. Yu, P. Mohseni, X. Li, V. Podolskiy, and D. Wasserman, Adv. Mater. 28, 1441-1448 (2016).
  • “III-V Nanowire Transistors for Low-Power Logic Applications: a Review and Outlook,” C. Zhang and X. Li, IEEE Trans. Electron Dev. 63(1), 223 (2016).
  • “Ultra-High Aspect Ratio InP Junctionless FinFETs by a Novel Wet Etching Method,” Y. Song, P. K. Mohseni, S. H. Kim, J. C. Shin, T. Ishihara, I. Adesida, and X. Li, IEEE Electron Dev. Lett. 37(8), 970-973 (2016).
  • “Enhanced axial confinement in a monolithically integrated self-rolled-up SiNx vertical microring photonic coupler,” X. Yu, L. L. Goddard, X. Li and X. Chen, Appl. Phys. Lett. 109, 111104 (2016).
  • “Direct Observation of Dopants Distribution and Diffusion in GaAs Planar Nanowires with Atom Probe Tomography," J. Qu, W. Choi, P. K. Mohseni, X. Li, Y. Zhang, H. Chen, S. Ringer, and R. Zheng, Appl. Mater. Interfaces, 8 (39), 26244–26250 (2016).
  • “Enhancement-Mode Ga2O3 Wrap-Gate Fin Field-Effect Transistors on Native (100) β-Ga2O3 Substrate with High Breakdown Voltage,” K. D. Chabak, N. Moser, A. J. Green, D. E. Walker Jr., S. E. Tetlak, E. Heller, A. Crespo, R. Fitch, J. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, G. Jessen, Appl. Phys. Lett. 109, 213501 (2016). Selected as the cover image of Nov. 21, 2016 issue.
  • "Scaling the Aspect Ratio of Nanoscale Closely-Packed Silicon Vias by MacEtch: Kinetics of Carrier Generation and Mass Transport," J.D. Kim, P.K. Mohseni, K. Balasundaram, S. Ranganathan, J. Pachamuthu, J.J. Coleman, X. Li, Adv. Funct. Mater. 1605614 (2017). DOI: 10.1002/adfm.201605614.
  • “Direct Electrical Probing of Periodic Modulation of Zn-Dopant Distributions in Planar VLS GaAs Nanowires,” W. Choi, E. Seabron, P.K. Mohseni, J.D. Kim, T. Gokus, A. Cernescu, P. Pochet, H. Johnson, W.L. Wilson, and X. Li, ACS Nano, ASAP. DOI: 10.1021/acsnano.6b06853.
  • “Ultra-Small, High-Frequency, and Substrate-Immune Microtube Inductors Transformed from 2D to 3D,” X. Yu, W. Huang, M. Li, T. M. Comberiate, S. Gong, J. E. Schutt-Aine, and X. Li, Scientific Reports 5, 9661 (2015). doi:10.1038/srep09661.
  • “Evolution of GaAs Nanowire Geometry in Selective Area Epitaxy,” K. P. Bassett, P.K. Mohseni, and X. Li, Appl. Phys. Lett. 106, 133102 (2015).
  • “RF Performance of Planar III-V Nanowire-Array Transistors Grown by Vapor-Liquid-Solid Epitaxy,” K. D. Chabak, X. Miao, C. Zhang, D. E. Walker Jr., P. K. Mohseni, and X. Li, IEEE Electron Device Lett., 36(5), 445-447 (2015).
  • “Quenched Phonon Drag in Silicon Nanowires Reveals Significant Effect in the Bulk at Room Temperature," J. Sadhu, H. Tian, J. Ma, B. Azeredo, J. Kim, K. Balasundaram, C. Zhang, X. Li, P. Ferreira, and S. Sinha, Nano Lett. 15 (5), pp 3159–3165 (2015).
  • “InAs Planar Nanowire Gate-All-Around MOSFETs on GaAs Substrates by Selective Lateral Epitaxy,” C. Zhang, W. Choi, P. Mohseni, and X. Li, IEEE Electron Dev. Lett., 36, 633 (2015).
  • “Monolithically integrated self-rolled-up microtube-based vertical coupler for 3D photonic integration,” X. Yu, E. Arbabi, L. L. Goddard, X. Li and X. Chen, Appl. Phys. Lett. 107, 031102 (2015).
  • “Enhanced Optical Transmission Through MacEtch-Fabricated Buried Metal Gratings,” R. Liu, X. Zhao, C. Roberts, L. Yu, P. Mohseni, X. Li, V. Podolskiy, and D. Wasserman, Adv. Mater. Accepted.
  • “III-V Nanowire Transistors for Low-Power Logic Applications: a Review and Outlook,” C. Zhang and X. Li, IEEE Transactions on Electron Devices, 63(1), 223 (2016).
  • “Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling,” S. Xu, Z. Yan, K. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, H. Liu, D. Xiao, G. Zhou, J. Lee, H. U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R. G. Nuzzo, Y. Huang, Y. Zhang and J. A. Rogers, Science, 347 (6218), 154-159 (2015).
  • “Inverse Metal-Assisted Chemical Etching Produces Smooth High Aspect Ratio InP Nanostructures,” S. H. Kim, P. K. Mohseni, Y. Song, T. Ishihara, and X. Li, Nano Lett. 15 (1), pp 641–648 (2015).
  • “High Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth,” X. Miao, K. D. Chabak, C. Zhang, P. K. Mohseni, D. E. Walker Jr., and X. Li, Nano Lett. ASAP (selected as the cover image of May 2015 issue). DOI: 10.1021/nl503596j
  • “Site-Controlled Planar GaAs Nanowire Growth: Yield and Mechanism,” C. Zhang, X. Miao, P. K. Mohseni, W. Choi, and X. Li, Nano Lett., 14 (12), pp 6836–6841 (2014).
  • “Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array,” P. Froeter, Y. Huang, O. V. Cangellaris, M. U. Gillette, J. C. Williams and X. Li, ACS Nano, 8 (11), pp 11108–11117 (2014).
  • “Precision structural engineering of self-rolled-up 3D nanomembranes guided by transient quasi-static FEM modeling,” W. Huang, S. Koric, X. Yu, K. J. Hsia, and X. Li, Nano Lett., 14 (11), pp 6293–6297 (2014).
  • “Transfer printing of tunable porous silicon microcavities with embedded emitters,” H. Ning, N. A. Krueger, X. Sheng, H. Keum, C. Zhang, K. D. Choquette, X. Li, S. Kim, J. A. Rogers & Paul V. Braun, ACS Photonics, 1 (11), pp 1144–1150 (2014).
  • “Device Architectures for Enhanced Photon Recycling in Thin-Film Multijunction Solar Cells,” X. Sheng, M. H. Yun, C. Zhang, A. M. Al-Okaily, M. Masouraki, L. Shen , S. Wang, W. L. Wilson, J. Y. Kim , P. Ferreira, X. Li, E. Yablonovitch, and J. A. Rogers,” Adv. Energy Mater. 1400919 (2014). DOI: 10.1002/aenm.201400919
  • “Effect of Diameter Variation on Electrical Characteristics of Schottky Barrier InAs Nanowire MOSFETs,” A. Razavieh, P. K. Mohseni, S. Mehrotra, S. Das, S. Suslov, X. Li, G. Klimeck, D. Janes, and J. Appenzeller, ACS Nano, 8 (6), pp 6281–6287 (2014).
  • “Monolithic III-V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy," P. K. Mohseni, A. Behnam, J. D. Wood, X. Zhao, K. Yu, N. C. Wang, J. A. Rogers, J. W. Lyding, E. Pop, and X. Li, Adv. Mater. accepted, 2014.
  • “III-V Junctionless Gate-All-Around Nanowire MOSFETs for High Linearity Low Power Applications,” Y. Song, C. Zhang, R. Dowdy, K. Chabak, P. K. Mohseni, W. Choi, and X. Li, IEEE Electron Dev. Lett. accepted, available on line, 2014.
  • “Photonic crystal membrane reflectors by magnetic field-guided metal-assisted chemical etching,” K. Balasundaram, P. Mohseni, Y.-C. Shuai, D. Zhao, W. Zhou, and X. Li, Appl. Phys. Lett. 103, 214103 (2013).
  • “3D hierarchical architectures based on self-rolled-up silicon nitride membranes,” P. Froeter, X. Yu, W. Huang, F. Du, M. Li, I. Chun, S. Kim, K. J. Hsia, J.A. Rogers, and X. Li, Nanotechnology, 24, 475301 (2013).
  • “Perturbation of Au-assisted Planar GaAs Nanowire Growth by p-Type Dopant Impurities,” R. Dowdy, C. Zhang, P. K. Mohseni, S. A. Fortuna, J. Wen, J. J. Coleman, and X. Li, Optical Materials Express, Vol. 3, Issue 10, pp. 1687-1697 (2013).
  • “DNA Detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide," L. Tang, I. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, Analytical Chemistry, 85, 9522-7 (2013).
  • “III-As pillar array-based light emitting diodes fabricated by metal-assisted chemical etching,” P. K. Mohseni, S. H. Kim, X. Zhao, K. Balasundaram, J. D. Kim, L. Pan, J. A. Rogers, J. J. Coleman, and X. Li, J. Appl. Phys, 114, 064909 (2013).
  • "Wafer-Scale Production of Uniform InAsP Nanowire Array on Silicon for Heterogeneous Integration", J. C. Shin, A. Lee, P. K. Mohseni, D. Y. Kim, L. Yu, J. H. Kim, H. J. Kim, W. J. Choi, D. Wasserman, K. J. Choi, and X. Li, ACS Nano, 7, 5463-5471 (2013).
  • “Monolithic barrier-all-around planar nanowire high electron mobility transistor with planar GaAs nanowire channel,” X. Miao, C. Zhang, and X. Li, Nano Letters, 13 (6), 2548, (2013).
  • “Doubling the power output of bifacial thin-film GaAs solar cells by embedding them in luminescent waveguides,” X. Sheng, L. Shen, T. Kim, L. Li, X. Wang, R. Dowdy, P. Froeter, K. Shigeta, X. Li, R. G. Nuzzo, N. C. Giebink, and J. A. Rogers, Adv. Energy Mater., (2013).
  • “Anomalous modulation of a zero bias peak in a hybrid nanowire-superconductor device,” A.D.K. Finck, D.J. Van Harlingen, P.K. Mohseni, K. Jung, and X. Li, Phys. Rev. Lett. 110, 126406 (2013).
  • “InxGa1-xAs Nanowire Growth on Graphene: van der Waals Epitaxy Induced Phase Segregation,” P. K. Mohseni, A. Behnam , J. D. Wood , C. English , J. W. Lyding , E. Pop , and X. Li, Nano Lett. ASAP.
  • “On-Chip Inductors with Self-rolled-up SiNx Nanomembrane Tubes: a Novel Design for Extreme Miniaturization,” W. Huang, X. Yu, R. Xu, P. Froeter, P. Ferreira, and X. Li, Nano Lett. 12 (12), pp 6283–6288, (2012).
  • “Heterogeneous Integration of InGaAs Nanowires on the Rear Surface of Si Solar Cells for Efficiency Enhancement,” J. C. Shin, P. Mohseni, K. J. Yu, S. Tomasulo, K. Montgomery, M. L. Lee, J. A. Rogers, and X. Li, ACS Nano, 6 (12), pp 11074–11079, (2012).
  • "Flexible Vertical Light Emitting Diodes," R.-H. Kim, S. Kim, Y.M. Song, H. Jeong, T.-I. Kim, J. Lee, X. Li, K.D. Choquette and J.A. Rogers, Small 8(20), 3123-3128 (2012).
  • “Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics,” X. Li, Current Opinion in Solid State & Materials Science, invited review article, 16, 71-81 (2012).
  • “Metal Assisted Chemical Etching for High Aspect Ratio Nanostructures: A Review of Characteristics and Applications in Photovoltaics,” X. Li, Current Opinion in Solid State & Materials Science, invited review article, in press.
  • “Strain Induced Self-rolled-up Ring Resonators: a review of geometrical and resonant properties,” X. Li, Advances in Optics and Photonics, invited article, 3 (4), 366-387 (2011).
  • “InxGa1-xAs Nanowires on Silicon: One-Dimensional Heterogeneous Epitaxy, Bandgap Engineering, and Photovoltaics,” J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C. Ning, J. A. Rogers, J. Zuo, and X. Li, Nano Lett., 11, 4831-4838 (2011).
  • "Scalable Monolithically Grown AlGaAs-GaAs Planar Nanowire High Electron Mobility Transistor,” X. Miao and X. Li, IEEE Electron. Dev. Lett., 32, 1227-1229 (2011).
  • “Epitaxial growth of three-dimensionally architecture optoelectronic devices,” E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, P. V. Braun, Nature Materials, 10, 676-681 (2011).
  • "Patterned quantum dot molecule laser fabricated by electron beam lithography and wet chemical etching," V.B. Verma, U. Reddy, N.L. Dias, K.P. Bassett, X. Li, and J.J. Coleman, IEEE Journal of Quantum Electronics, v46 n12, 1827-1833 (2010).
  • “Direct Heterointegration of III-V Materials on Group IV Substrates", David Ahmari, Brian McDermott, Shawn Thomas, Bradley Roof, Quesnell Hartmann, and Xiuling Li, ECS Transactions, 33 (6), 849 – 857 (2010).
  • “Geometry effect on the strain induced self-rolling of semiconductor membranes”, Ik Su Chun, Archana Challa, Brad Derickson, Jimmy Hsia, and X. Li, Nano Lett. 10, 3927-3932 (2010).
  • “Tuning the Photoluminescence Characteristics with Curvature for GaAs Quantum Well Microtubes,” I. Chun, K. Bassett, A. Challa, and X. Li, Applied Physics Letters, 96, 251106 (2010).
  • “Light Emission Characteristics and Mechanics of Foldable Inorganic Light-Emitting Diodes,” Sang-Il Park, An-Phong Le, Jian Wu, Yonggang Huang, Xiuling Li, and John A. Rogers, Advanced Mater. 22, 2062 (2010).
  • "Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays," W. Chern, K. Hsu, I.S. Chun, B.P. de Azeredo, N. Ahmed, K.H. Kim, J. Zuo, N. Fang, P. Ferreira, and X. Li, Nano Letters 10, 1582 (2010).
  • "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," J. Yoon, S. Jo, I.S. Chun, I. Jung, H.S. Kim, M. Meitl, E. Menard, X. Li, J.J. Coleman, U. Paik & J.A. Rogers, Nature 465, 329 (2010).
  • “Metal-catalyzed semiconductor nanowires: a review on the control of growth direction,” S.A. Fortuna, and X. Li, Semiconductor Science and Technology, 25 (2010) 024005.
  • "Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays," Sang-Il Park,Yujie Xiong,Rak-Hwan Kim,Paulius Elvikis, Matthew Meitl, Dae-Hyeong Kim, Jian Wu, Jongseung Yoon, Chang-Jae Yu, Zhuangjian Liu, Yonggang Huang, Keh-chih Hwang, Placid Ferreira, Xiuling Li, Kent Choquette, John A. Rogers, Science, 325, 977 (2009).
  • "GaAs MESFET with a High Mobility Self-Assembled Planar Nanowire Channel," S. A. Fortuna and X. Li, IEEE Electron. Device Letters, 30 (6), 593-595 (2009).
  • "Planar GaAs Nanowires on GaAs (100) Substrates: Self-Aligned, Nearly Twin-Defect Free, and Transfer-Printable", S.A. Fortuna, J. Wen, I.S. Chun, and X. Li, Nano Letters, 8(12), 4421-4427 (2008).
  • "Strain Induced Semiconductor Nanotubes: from formation process to device applications", Xiuling Li, Journal of Physics D: Applied Phys., invited topical review, 41, 193001 (2008)
  • “Fabrication and Characterization of InGaP/GaAs Heterojunction Bipolar Transistors on Germanium on Insulator (GOI) Substrates,” S. G. Thomas, E. S. Johnson, C. Tracy, P. Maniar, X. Li, B. Roof, Q. Hartmann and D. A. Ahmari, Electron Device Lett., 26, 438 , 2005.
  • "In-plane Bandgap Control in Porous GaN through Electroless Wet Chemical Etching," X. Li, Y.-W. Kim, P. W. Bohn, and I. Adesida, Appl. Phys. Lett., 80, 980-982 (2002).
  • “Selective enhancement of 1540 nm Er3+ emission centers in Er- implanted GaN by Mg codoping”, S. Kim, S.J. Rhee, X. Li, J.J. Coleman, and S.G. Bishop, Appl. Phys. Lett. 76, 2403 (2000).
  • “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, X. Li and P.W. Bohn, Appl. Phys. Lett.77, 2572 (2000).


  • Extreme Miniaturization of On-Chip Filters for High Frequency or Wearable Electronics using Self-Rolled-Up Membrane (S-RUM) Technology (US 62/144,516, pending)
  • Method of forming an array of high aspect ratio semiconductor nanostructures (US 8,980,656, awarded 03/17/2015)
  • Metal-assisted chemical etching (MacEtch) to produce III-V semiconductor nanostructures (US 8,951,430, 02/10/2015)
  • Rolled-up transformer structure for a radio frequency integrated circuit (RFIC) (US 8,941,460, 01/27/2015)
  • Magnetic field-guided MacEtch for 3D metamaterials (US patent serial number 61/904,899, pending)
  • Rolled-up transmission line structure for a radio frequency integrated circuit (RFIC) (US 9,018,050, 04/28/2015)
  • Rolled-up inductor structure for a radio frequency integrated circuit (RFIC) (US 9,224,532, 12/29/2015)
  • 18. Field effect transistor structure comprising a stack of vertically separated channel nanowires (US 9,224,809, 12/29/2015)
  • Method of Forming a Metal Pattern on a Semiconducting Substrate for Metal-Assisted Chemical Etching (US patent serial number 61/606,790, pending)
  • Method of controlled growth and release of self-aligned planar semiconductor nanowires (US 68810009, 08/19/2014)
  • Method of forming Nanoscale Three Dimensional Patterns in a Porous Material (US8586843, 07/16/2013)
  • Metal-assisted chemical etching to produce porous group III-V materials (US6762134, 07/13/2004)
  • Metal-assisted chemical etching porous silicon formation method (US6790785, 09/14/2004)

Journal Editorships

  • Deputy Editor, Applied Physics Letters

Professional Societies

  • International conference on nanowires (ICON), Regional program chair for America (2015)
  • IEEE Photonics Society, Board of Governors (2014-2016)
  • IEEE Photonics Journal, Associate Editor (2012 - present)
  • Faculty advisor to IEEE EDS student chapter (2010-present )
  • IEEE, senior member, 2008


  • IEEE Fellow (2017)
  • Faculty Entrepreneurial Fellow, Inaugural, College of Engineering (2015)
  • Willett Faculty Scholar, COE, UIUC (2015)
  • Distinguished Lecturer, IEEE Nanotechnology Council (2014-2015)
  • A. T. Yang Research Award (2013)
  • Dean's award for excellence in research (2012)
  • ONR Young Investigator Research award (2011)
  • DARPA Young Faculty Award (2009)
  • National Science Foundation CAREER Award (2008)

Teaching Honors

  • Campus Excellent Teacher ranked by students, 2015

Public Service Honors

  • Deputy Editor, Applied Physics Letters (2015)
  • Board of governors, IEEE Photonics Society (2014-2016)

Courses Taught

  • ECE 444 - IC Device Theory & Fabrication
  • ECE 518 - Adv Semiconductor Nanotech
  • ECE 590 - Grad Sem in Special Topics
  • ENG 298 - Breakthrough Innovation Teams
  • ENG 398 - Breakthrough Innovation Teams
  • ENG 401 - Develop Breakthrough Projects
  • ENG 498 - Breakthrough Innovation Teams
  • ENG 598 - Breakthrough Innovation Teams
  • GE 598 - Breakthrough Innovation Teams
  • TE 298 - Breakthrough Innovation Teams
  • TE 398 - Breakthrough Innovation Teams
  • TE 401 - Develop Breakthrough Projects
  • TE 498 - Breakthrough Innovation Teams
  • TE 598 - Breakthrough Innovation Teams